
1

Proactively Preventing Data Corruption

Introduction

Data corruption is an insidious problem in

storage. There are many types of corruption

and many means to prevent them.

Enterprise class servers use error check-

ing and correcting caches and memory to

protect against single and double bit errors.

System buses have similar protective mea-

sures such as parity. Communications go-

ing over the network are protected by check-

sums.

On the storage side many installations

employ RAID (Redundant Array of Inexpen-

sive Disks) technology to protect against

disk failure. In the case of hardware

RAID the array firmware will often use ad-

vanced checksumming techniques and me-

dia scrubbing to detect and potentially cor-

rect errors. The disk drives themselves also

feature sophisticated error corrective mea-

sures, and storage protocols such as Fibre

Channel and iSCSI feature a Cyclic Redun-

dancy Check (CRC) that guards against data

corruption on the wire.

At the top of the I/O stack, modern

filesystems such as Oracle’s btrfs use check-

summing techniques on both data and

filesystem metadata. This allows the filesys-

tem code to detect data that has gone bad

either on disk or in transit. The filesystem

can then take corrective action, fail the I/O

request or notify the user.

A common trait in most of the existing

protective measures is that they work in

their own isolated domains or at best be-

tween two adjacent nodes in the I/O path.

There has been no common method for en-

suring true end-to-end data integrity. . .until

now. Before describing this new technolo-

gy in detail, let us take a look at how data

corruption is handled by currently shipping

products.

1 Data Corruption

Corruption can occur as a result of bugs in

both software and hardware. A common

failure scenario involves incorrect buffers

being written to disk, often clobbering good

data.

This latent type of corruption can go

undetected for a long period of time. It

may take months before the application at-

tempts to reread the data from disk, at

which point the good data may have been

lost forever. Short backup cycles may even

have caused all intact copies of the data to

be overwritten.

A crucial weapon in preventing this type

of error is proactive data integrity protec-

tion: a method that prevents corrupted I/O

requests from being written to disk.

For several years Oracle has offered a

technology called HARD (Hardware Assisted



2

Figure 1 Five different protection scenarios. Starting at the bottom, the “Normal I/O” line il-

lustrates the disjoint integrity coverage offered using a current operating system and standard

hardware. The “HARD” line shows the protection envelope offered by the Oracle Database ac-

cessing a disk array with HARD capability. “DIF” shows coverage using the integrity portions of

the SCSI protocol. “DIX” shows the coverage offered by the Data Integrity Extensions. And finally

at the top, “DIX + DIF” illustrates the full coverage provided by the Data Integrity Extensions in

combination with T10 DIF.

Resilient Data), which allows storage sys-

tems to verify the integrity of an Oracle

database logical block before it is commit-

ted to stable storage. Though the level of

protection offered by HARD is mandatory in

numerous enterprise and government de-

ployments, adoption outside the mission-

critical business segment has been slow.

The disk array vendors that license and im-

plement the HARD technology only offer it in

their very high end products. As a result,

Oracle has been looking to provide a com-

parable level of resiliency using an open and

standards-based approach.

A recent extension to the SCSI family of

protocols allows extra protective measures,

including a checksum, to be included in an

I/O request. This appended data is referred

to as integrity metadata or protection infor-

mation.

Unfortunately, the SCSI protection enve-

lope only covers the path between the I/O

controller and the storage device. To rem-

edy this, Oracle and a few select indus-

try partners have collaborated to design a

method of exposing the data integrity fea-

tures to the operating system. This technol-

ogy, known as the Data Integrity Extensions,

allows the operating system—and even ap-

plications such as the Oracle Database—to

generate protection data that will be veri-

fied as the request goes through the entire



3

I/O stack. See Figure 1 for an illustration of

the integrity coverage provided by the tech-

nologies described above.

2 T10 Data Integrity Field

T10 is the INCITS standards body responsible

for the SCSI family of protocols. Data cor-

ruption has been a known problem in the

storage industry for years and T10 has pro-

vided the means to prevent it by extending

the SCSI protocol to allow integrity metadata

to be included in an I/O request. The ex-

tension to the SCSI block device protocol is

called the Data Integrity Field or DIF.

Normal SCSI disks use a hardware sector

size of 512 bytes. However, when used in-

side disk arrays the drives are often refor-

matted to a bigger sector size of 520 or 528

bytes. The operating system is only exposed

to the usual 512 bytes of data. The extra 8

or 16 bytes in each sector are used internally

by the array firmware for integrity checks.

DIF is similar in the sense that the stor-

age device must be reformatted to 520 byte

sectors. The main difference between DIF

and proprietary array firmware is that the

format of the extra 8 bytes of information

per sector is well defined as well as being an

open standard. This means that every node

in the I/O path can participate in generating

and verifying the integrity metadata.

Each DIF tuple is split up into three sec-

tions called tags. There is a 16-bit guard

tag, a 16-bit application tag and a 32-bit ref-

erence tag.

The DIF specification lists several types of

Figure 2 DIF tuple contents

protection. Each of these protection types

defines the contents of the three tag fields

in the DIF tuple. The guard tag contains a

16-bit CRC of the 512 bytes of data in the

sector. The application tag is for use by the

application or operating system, and finally

the reference tag is used to ensure order-

ing of the individual portions of the I/O re-

quest. The reference tag varies depending

on protection type. The most common of

these is Type 1 in which the reference tag

needs to match the 32 lower bits of the tar-

get sector logical block address. This helps

prevent misdirected writes, a common cor-

ruption error where data is written to the

wrong place on disk.

If the storage device detects a mismatch

between the data and the integrity metadata

the I/O will be rejected before it is written to

disk. Also, since each node in the I/O path is

free to inspect and verify the integrity meta-

data, it is possible to isolate points of error.

For instance, it is conceivable that in the fu-

ture advanced fabric switches will be able

to verify the integrity as data flows through

the Storage Area Network.

The fact that a storage device is format-

ted using the DIF protection scheme is trans-

parent to the operating system. In the case

of a write request the I/O controller will re-

ceive a number of 512-byte buffers from the

operating system and proceed to generate



4

and append the appropriate 8 bytes of pro-

tection information to each sector. Upon

receiving the request the SCSI disk will verify

that the data matches the included integrity

metadata. In the case of a mismatch, the I/O

will be rejected and an error returned to the

operating system.

Similarly, in the case of a read request the

storage device will include the protection in-

formation and send 520 byte sectors to the

I/O controller. The controller will verify the

integrity of the I/O, strip off the protection

data and return 512 byte data buffers to the

operating system.

In other words, the added level of protec-

tion between controller and storage device

is completely transparent to the operating

system. Unfortunately, this also means the

operating system is unable to participate in

the integrity verification process. This is

where the Data Integrity Extensions come

in.

Allows I/O controller and storage device to ex-

change protection information.

Each data sector is protected by an 8-byte

integrity tuple

The contents of this tuple include a checksum

and an incrementing counter that ensures the

I/O is intact.

Both I/O controller and storage device can de-

tect and reject corrupted requests.

Figure 3 T10 Data Integrity Field

3 Data Integrity Extensions

While increased resilience against errors be-

tween controller and storage device is an

improvement, the design goal was to en-

able true end-to-end data integrity protec-

tion. An obvious approach was to expose

the DIF information above the I/O controller

level and let the operating system gain ac-

cess to the integrity metadata.

3.1 Buffer Separation

Exposing the 520-byte sectors to the oper-

ating system is problematic, however. In-

ternally, operating systems generally work

with sizes that are multiples of 512. On X86

and X86_64 hardware the system page size is

4096 KB. This means that 8 sectors fit nicely

in a page. It is extremely inconvenient for

the operating system to deal with buffers

that are multiples of 520 bytes.

The Data Integrity Extensions allow the

operating system to gain access to the

DIF contents without changing its internal

buffer size. This is achieved by separating

the data buffers and the integrity metadata

buffers. The controller firmware will inter-

leave the data and integrity buffers on write

and split them on read.

Separating the data from the integrity

metadata in the operating system also re-

duces the risk of data corruption. Now two

buffers in different locations need to match

up for an I/O request to be successfully com-

pleted.



5

3.2 Performance Implications

DIF protection between I/O controller and

disk is handled by custom hardware at near

zero performance penalty. For true end-to-

end data integrity, however, the application

or the operating system needs to generate

the protection information. Calculating the

checksum in software obviously comes at a

performance penalty and the T10 DIF stan-

dard mandates a heavyweight 16-bit CRC al-

gorithm for the guard tag.

This CRC is quite expensive to calculate

compared to other commonly used check-

sums. To alleviate the impact on system

performance the TCP/IP checksum algorithm

is used instead. This results in an almost

negligible impact on system performance.

The Data Integrity Extensions allow this al-

ternate checksum type to be used by the

operating system. The I/O controller will

convert the IP checksum to the DIF CRC when

sending a request to the storage device and

vice versa.

The net result is that a full end-to-end

protection envelope can be provided at a

very low cost in terms of processing over-

head.

4 Linux Data Integrity Framework

Oracle has implemented support for DIF and

the I/O Controller Data Integrity Extensions

in the Linux kernel. The changes are re-

leased under the GNU General Public License

and have been submitted for inclusion in the

official kernel tree. With this, Linux becomes

Allow transfer of data integrity information to

and from the host operating system.

Allow separation of data and integrity meta-

data buffers.

Allow a lightweight checksum algorithm to

limit impact on operating system perfor-

mance.

Figure 4 Data Integrity Extensions

the first operating system to gain true end-

to-end data integrity protection.

The Linux changes allow integrity meta-

data to be generated and passed through the

I/O stack. Currently the extensions are on-

ly accessible from within the kernel, but a

userland API is in development. The goal

is for all applications to be able to benefit

from the extra data protection features.

Allows integrity metadata to be attached to

an I/O request.

Allows integrity metadata to be generated au-

tomatically for unmodified applications.

Will allow advanced applications to manually

send and receive integrity metadata.

Figure 5 Linux Data Integrity Framework

5 Future Developments

At a recent storage networking industry

conference Oracle and its partners demon-

strated an (unmodified) Oracle Database

running on Linux using the data integrity



6

framework. The server used a prototype

Emulex fibre channel controller, a disk tray

from LSI and disk drives from Seagate. We

demonstrated how errors could be inject-

ed into the system, identified, isolated and

remedied without causing downtime or on-

disk corruption.

The SCSI standard only governs commu-

nications between I/O controller and storage

device, and as such the interface between I/O

controller and the operating system is out-

side the scope of the T10 organization. Con-

sequently, Oracle and its partners have ap-

proached the Storage Networking Industry

Association and set up Data Integrity Task

Force with the intent to standardize the data

integrity interfaces for applications, operat-

ing systems and I/O controllers.

Hardware products supporting DIF and the

Data Integrity Extensions are scheduled for

release in 2008.

Author

Martin K. Petersen has been involved in Linux development since the early nineties. He has worked on PA-RISC

and IA-64 Linux ports for HP as well as the XFS filesystem and the Altix kernel for SGI. Martin works in Oracle’s

Linux Kernel Engineering group where he focuses on enterprise storage technologies. He can be reached at

martin.petersen@oracle.com.


