
Reprinted from the

Proceedings of the
Linux Symposium

July 23rd–26th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Dirk Hohndel, Intel
Gerrit Huizenga, IBM
Dave Jones, Red Hat, Inc.
Matthew Wilson, rPath
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.
Gurhan Ozen, Red Hat, Inc.
Eugene Teo, Red Hat, Inc.
Kyle McMartin, Red Hat, Inc.
Jake Edge, LWN.net
Robyn Bergeron
Dave Boutcher, IBM
Mats Wichmann, Intel

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

Linux Data Integrity Extensions

Martin K. Petersen
Oracle

martin.petersen@oracle.com

Abstract

Many databases and filesystems feature checksums on
their logical blocks, enabling detection of corrupted
data. The scenario most people are familiar with in-
volves bad sectors which develop while data is stored
on disk. However, many corruptions are actually a re-
sult of errors that occurred when the data was originally
written. While a database or filesystem can detect the
corruption when data is eventually read back, the good
data may have been lost forever.

A recent addition to SCSI allows extra protection infor-
mation to be exchanged between controller and disk. We
have extended this capability up into Linux, allowing
filesystems (and eventually applications) to be able to at-
tach integrity metadata to I/O requests. Controllers and
disks can then verify the integrity of an I/O before com-
mitting it to stable storage. This paper will describe the
changes needed to make Linux a data-integrity-aware
OS.

1 Data Corruption

As witnessed by the prevalence of RAID deployment in
the IT industry, there is a tendency to focus on data cor-
ruption caused by disk drive failures. While head misses
and general bit corruptions on the platter are common
problems, there are other possible corruption scenarios
that occur frequently enough to warrant being remedied
as well.

When corruption is experienced, hardware is often
blamed. However, modern systems feature extensive
protection on system buses, error checking and correct-
ing memory, etc. In the Fibre Channel environments
commonly used in enterprises, wire traffic is protected
by a cyclic redundancy check. So in many ways the
physical hardware level is becoming increasingly re-
silient against failures.

The software stack, however, is rapidly growing in com-
plexity. This implies an increasing failure potential:
Harddrive firmware, RAID controller firmware, host
adapter firmware, operating system code, system li-
braries, and application errors. There are many things
that can go wrong from the time data is generated in
host memory until it is stored physically on disk.

Most storage devices feature extensive checking to pre-
vent errors. However, these protective measures are al-
most exclusively being deployed internally to the de-
vice in a proprietary fashion. So far, there have been
no means for collaboration between the layers in the I/O
stack to ensure data integrity.

An extension to the SCSI family of protocols tries to
remedy this by defining a way to check the integrity of
an request as it traverses the I/O stack. This is done
by appending extra information to the data. This extra
information is known as integrity metadata or protection
information.

The integrity metadata enables corrupted write requests
to be detected and aborted, thereby preventing silent
data corruption.

2 Data Integrity Field

A harddisk is generally divided into blocks of 512 bytes,
called sectors. On the physical platter, the sector al-
location is actually a bit bigger to allow for CRC and
information internal to the drive. However, this extra
information is not available outside of the disk drive
firmware. Consumer-grade disks often trade capacity
for reliability and use less space for the error checking
information. Enterprise disks feature stronger protec-
tion schemes and as a result, expose less storage capac-
ity to the user.

Unlike drives using parallel and serial ATA interfaces,

• 151 •

152 • Linux Data Integrity Extensions

SCSI1 disks allow for sectors bigger than 512 bytes to
be exposed to the operating system. Sizes of 520 or 528
bytes are common. It is important to note that these
‘fat’ sectors really are bigger, and that the extra bytes
are orthogonal to space used for the drive’s internal er-
ror checking.

Traditionally these extra few bytes of information have
been used by RAID controllers to store their own inter-
nal checksums. The drives connected to the RAID head
are formatted using 520-byte sectors. When talking to
the host operating system, the RAID controller only ex-
poses 512-byte blocks; the remaining 8 bytes are used
in a way proprietary to the RAID controller firmware.

A few years ago, an extension to the SCSI Block Com-
mands specification was approved by the T10 technical
committee that governs the SCSI family of protocols.
The extension, known as Data Integrity Field, or DIF,
standardizes the contents of the extra 8 bytes of infor-
mation per 520-byte sector.

This allows the integrity metadata to be visible outside
of the domain of disk or RAID controller firmware. And
as a result, this opens up the possibility of doing true
end-to-end data integrity protection.

2.1 The DIF Format

Each 8-byte DIF tuple (see Figure 1) contains 3 tags:

• Guard tag: a 16-bit CRC of the sector data.

• Application tag: a 16-bit value that can be used by
the operating system.

• Reference tag: a 32-bit number that is used to en-
sure the individual sectors are written in the right
order, and in some cases, to the right physical sec-
tor.

A DIF-capable host adapter will generate the 8 bytes of
integrity metadata on a write and append it to the 512-
byte sectors received from the host operating system.
For read commands, the controller will receive 520-byte
sectors from the disk, verify that the integrity metadata
matches the data, and return 512-byte sectors to the op-
erating system.

1We will use the term ‘SCSI’ to refer to any device using the
SCSI protocol, regardless of whether the physical transport is SPI,
Fibre Channel, or SAS.

512 bytes of data APP REFGRD

16-bit guard tag (CRC of 512-byte data portion)

16-bit application tag

32-bit reference tag

5120 514 516 519

Figure 1: 520-byte sector containing 512 bytes of data
followed by 8-byte DIF tuple

A DIF-capable disk drive can compare the data with the
integrity metadata received from the host adapter and
reject the I/O if there is a mismatch. How to interpret
the DIF tuple content depends on the protection type the
drive has been formatted with. The current specification
allows three types, and they all mandate use of the guard
tag to protect the contents of the 512-byte data portion
of the sector.

• DIF Type 1: reference tag must match lower 32 bits
of the target sector number.

• DIF Type 2: reference tag must match the seed
value in the SCSI command + offset from begin-
ning of I/O.

• DIF Type 3: this reference tag is undefined.

The drive must be low-level reformatted to switch be-
tween the three protection types or to turn off DIF and
return to 512-byte sectors.

3 Data Integrity Extensions

The T10 standards committee only defines communi-
cation between SCSI controllers and storage devices.
The DIF specification contains no means for sending/
receiving integrity metadata to/from host memory, and
traditionally host adapter programming interfaces have
been proprietary and highly vendor-specific.

Oracle approached several fibre channel adapter vendors
putting forth a set of requirements for controllers to al-
low exchanging integrity metadata with the host operat-
ing system. This resulted in a specification [2] for what
is now known as the Data Integrity Extensions, or DIX.

DIX defines a set of interfaces that host adapters must
provide in order to send and receive I/O requests with
integrity metadata attached. This in turn enables us to
extend the exchange of protection information all the
way up to the application.

2008 Linux Symposium, Volume Two • 153

If the controller is DIX-capable and the storage device
is DIF-capable, we can create a protection envelope that
covers the entire I/O path, thus providing true end-to-
end data integrity (see Figure 2).

3.1 Performance Impact

The 16-bit CRC mandated by the DIF specification is
somewhat expensive to calculate in software. Bench-
marks showed that for some workloads, calculating the
CRC16 in software had a detrimental impact on perfor-
mance. One of Oracle’s partners had hardware capa-
ble of using the IP checksum instead of CRC16. The
IP checksum is much cheaper to calculate and offers
weaker protection than the CRC, so there is a trade-off
between data integrity and performance. Consequently,
the IP checksum feature is optional and can be enabled
at will.

If the IP feature is enabled, Linux will put IP check-
sums in the guard tag instead of CRC16. The controller
will verify the checksums and convert them to the T10-
mandated CRC before passing the data to the drive. On
reads, the opposite conversion takes place.

From a performance perspective, the cost is very low.
It has less impact on system performance than software
RAID5.

4 SCSI Layer

We have implemented support for both DIF and DIX
in the Linux kernel. The work has been done from the
bottom up, starting with the SCSI layer. The following
sections will describe the changes required.

4.1 Discovery

For the exchange of integrity metadata to happen, it
would seem reasonable to require that controller and
storage device are DIX- and DIF-capable, respectively.
However, even in a setup where the disk does not sup-
port DIF, there is still value in having the host adapter
verify the data integrity before sending the command on
to the drive.

Similarly, some controllers may support DIF while talk-
ing to the drive, but may not have the capability to ex-
change integrity metadata with Linux. In that situation

it is still desirable to have communications between host
adapter and disk protected.

Consequently two orthogonal negotiations are taking
place at discovery time: One for DIX between Linux
and the SCSI controller, and one for DIF between con-
troller and storage device.

The controller driver indicates its DIF and DIX capabili-
ties when it registers itself with the SCSI layer. The DIF
type is probed when a drive is scanned. If both DIX and
DIF are supported, integrity metadata can be exchanged
end-to-end.

4.2 Scatter-Gather List Separation

A buffer in host memory that needs to be transferred to
or from a storage device is virtually contiguous. This
means that the application sees it as one linear blob
of data. In reality the buffer is likely to be physically
discontiguous, made up of several scattered portions of
physical memory. Consequently, a more complex con-
struct is needed to describe what to transfer.

Network and storage controllers use a scatter-gather list
for this purpose. The list consists of one or more <page
address, offset, length> tuples, each identify-
ing a region in memory to transfer as part of the request.

Linux performs all block I/O in multiples of 512 bytes
and it would be highly inconvenient to support 520-byte
sectors and buffers throughout the kernel.

On the wire between controller and disk, however, in-
tegrity metadata must be interleaved with the data sec-
tors; therefore, the buffer sent to the disk must be a mul-
tiple of 520 bytes long.

As a result, DIX requires separating the data and in-
tegrity metadata in host memory. The data buffer re-
mains unchanged, while the integrity metadata is stored
in a separate buffer. The two buffers are then mapped
into separate scatter-gather lists which are handed to the
I/O controller.

When writing, the controller will transfer the memory
described by the two scatterlists from the host, check
them, and interleave data and integrity metadata before
the request goes out on the wire as 520-byte sectors.

154 • Linux Data Integrity Extensions

OS Disk DriveI/O Controller SAN Disk ArrayApplication

Normal I/O vendor specific
integrity measures

vendor specific
integrity measures

vendor specific
integrity measures

t ransport CRC vendor specific
integrity measures

vendor specific
integrity measures

DIF T10 Data Integrity Field protect ion envelope

DIX Data Integrity Ext . protect ion envelope

DIX + DIF Data Integrity Extensions + T10 Data Integrity Field combined protect ion envelope

Figure 2: Protection Envelopes: The ‘Normal I/O’ line shows disjoint protection domains in a normal setup. Above
that, the ‘DIF’ line illustrates the area covered by the T10 DIF standard. ‘DIX’ displays the coverage of the Data
Integrity Extensions, and at the top, ‘DIX+DIF’ combined yields a full end-to-end protection envelope.

On read, the 520-byte sectors sent by the drive are ver-
ified, split up, and transferred into the host memory de-
scribed by the two scatter-gather lists provided by the
kernel.

This separation of data and integrity metadata makes it
much less intrusive to support DIF in the kernel.

The integrity buffer is described by an extra scsi_

data_buffer in struct scsi_cmnd, which is the
container for SCSI requests in the kernel.

4.3 Reference Tag Remapping

When a drive is formatted with Type 1 protection, the
reference tag must contain a value corresponding to the
physical sector the data is being written to for the I/O
to complete successfully. Thanks to partitioning and
stackable devices such as MD or the Device Mapper, the
physical sector LBA is often very different from what
the filesystem requests when submitting the I/O. The
reference tag needs to be remapped accordingly.

One solution would be to postpone filling out the ref-
erence tag until the physical sector number is actually
known. However, we would like to leverage the pro-
tection offered by the reference tag’s ability to tie the
individual sectors of an I/O together.

Another option would be for the filesystem to recur-
sively query the underlying block devices requesting the
start LBA. Unfortunately, this will not work, as an I/O
may straddle physical devices. The solution is to have a
virtual reference tag filled out when the I/O is submitted
by the filesystem. That virtual tag is then remapped to
the physical value at the bottom of the I/O stack when
writing. Similarly, when data is read, the physical ref-
erence tags received from the drive are remapped to the
virtual numbers expected by the filesystem.

This approach also avoids multiple remapping steps as
the request traverses a layered I/O stack.

5 Block Layer

Conceptually, DIF and DIX constitute a blatant layer-
ing violation. Applications do not know or care whether
they are accessing a SATA or a SCSI disk, or whether
the data is mounted over the network. On the other hand,
for the end-to-end protection to work, applications or
filesystems need to know how to prepare integrity meta-
data in a format understood by the actual physical de-
vice.

Thankfully, the provider of the integrity metadata does
not have to be aware of the intricate details of what is
inside the integrity buffer, and consequently the block
layer treats the integrity metadata in an opaque fashion.

2008 Linux Symposium, Volume Two • 155

It has no idea what is stored inside the extra structure
attached to the bio.2

5.1 Block Integrity Payload

The integrity metadata is stored in the block integrity
payload, or bip struct which attached to the bio. The
bip is essentially a trimmed-down version of the I/O
vector portions of a struct bio with a few extra fields
for housekeeping, including the virtual sector number
used for remapping.

A series of bio_integrity_* calls allows interaction
with the protection information, and these have been
designed to closely mirror the calls for allocating bio

structures, adding pages to them, etc.

5.2 Integrity Properties, Splitting and Merging

There are only a few things the block layer really needs
to be aware of with respect to the attached protection
information:

• Because a bio can be split and merged, the block
layer needs to know how much integrity metadata
goes with each chunk of data.

• The layer needs to know whether the device is ca-
pable of storing extra information in the application
tag.

• It must be capable of generating and verifying the
integrity metadata.

All this information is communicated to the block
layer when a storage device registers itself using blk_

integrity_register(). In the DIF case, this is
done just after the SCSI disk makes its presence known
to the kernel.

The 16 bits of space in the DIF application tag may or
may not be used internally by the storage device. A bit
in the device’s SCSI Control Mode Page indicates
whether it is available. If it is, the SCSI disk driver will
signal to the block layer that the space is available for
use by the filesystem.

As part of that registration process, the SCSI disk driver
also provides two callback functions to the block layer:

2struct bio is the fundamental block I/O container in the
Linux kernel.

one for generating integrity metadata, and one for veri-
fying integrity metadata. This way, the block layer can
call the functions to opaquely generate and check pro-
tection information without knowing the intricate details
of SCSI, DIF, or how the drive has been formatted.

5.3 Stacked Devices

Servers often use software RAID (MD) and/or the Log-
ical Volume Manager. These are implemented as virtual
block devices inside the kernel. If all the disks that con-
stitute an MD disk or a logical volume support the same
type of protection, the virtual block device is tagged as
being integrity-capable.

A similar approach is taken for virtual block devices ex-
posed to virtualized guests, allowing the protection en-
velope to reach all the way from the application running
on the guest through the hypervisor to the storage de-
vice.

5.4 Automatic Generation/Verification

Filesystems that allow integrity metadata to be trans-
ferred to/from userland are expected to interact directly
with the bip calls. However, legacy filesystems like
ext3 and ext4 are not integrity-aware. There are also
other I/O code paths that either originate inside the ker-
nel or map user pages directly. For those cases, the
integrity infrastructure allows protection information to
be automatically generated by the block layer (writes)
or verified before the bio is returned to the submitter
(reads).

Normally, I/O completion is run in interrupt context, as
it usually only involves marking the pages referenced by
the request as being up-to-date. However, calculating a
checksum for the entire I/O is a time-consuming pro-
cess. If the request needs to be verified, completion is
postponed using a work_queue.

The automatic generation/verification of integrity meta-
data enables integrity protection of all I/O from the
block layer to the disk without any changes to the
filesystem code.

6 Filesystem Interface

6.1 Protection Information Passthrough

Filesystems that wish to allow transfer of integrity meta-
data to and from userland applications will need to man-

156 • Linux Data Integrity Extensions

ually attach it to the bio. This is done by attaching a
bip to the bio and then adding the protection informa-
tion pages using bio_integrity_add_page().

6.2 Tagging

As mentioned above, the DIF tuple includes a 16-bit ap-
plication tag that is stored by the block device as any
other type of data; i.e., it is not used for integrity verifi-
cation in any of the existing protection types.

These 16 bits can be used freely by the owner of the
block device—in this case the filesystem—to tag the
sectors. One possible use is to identify which inode a
sector belongs to. This will significantly improve the
fsck process’ ability to recover a damaged filesystem.

Filesystems generally use blocks that are bigger than
512 bytes. Because two bytes per sector is a very lim-
ited space, the block integrity infrastructure allows tag-
ging at the bio level instead. An opaque buffer contain-
ing the filesystem-internal information can be supplied
at integrity-metadata-generation time. The data in the
buffer is then interleaved between the application tags
in the sectors targeted by the bio, enabling the filesys-
tem to store 16 bytes of recovery information for each
4KB logical block.

The tag data can subsequently be read back by running
bio_integrity_get_tag() upon completion of a
read bio.

7 Future Work

Work is in progress to implement support for the data
integrity extensions in btrfs [1], enabling the filesystem
to use the application tag. The next step will be defin-
ing the interfaces that will allow applications to perform
syscalls that include integrity metadata.

We are working on three different interfaces that expose
integrity metadata to userspace applications:

1. Transparent: Integrity metadata is generated by the
C library transparently to the application.

2. Opaque: This interface will allow the application
to protect a buffer in memory prior to submitting
the I/O to disk. Just like the block layer, the appli-
cation will not know that the actual integrity meta-
data is in DIF format.

3. Explicit: Some applications will need direct ac-
cess to the native integrity metadata, bypassing the
filesystem. Examples are the mkfs and fsck pro-
grams that need to be able to read and write the
application tag directly.

T13, the committee that governs the SATA specification,
has proposed a feature called External Path Protection
which is essentially the same as DIF. The Linux ker-
nel data integrity infrastructure has been designed to ac-
commodate DIF as well as EPP. A similar data integrity
feature for SCSI tape drives is also in development.

Products supporting DIF and DIX are scheduled for
general availability in 2008. The Linux Data Integrity
Project can be found at http://oss.oracle.
com/projects/data-integrity/.

Acknowledgements

Thanks to Randy Dunlap, Joel Becker, and Zach Brown
for their feedback on this paper.

References

[1] Chris Mason. btrfs. http:
//oss.oracle.com/projects/btrfs/.

[2] Martin K. Petersen. I/O Controller Requirements
for Data Integrity Aware Operating Systems.
http://oss.oracle.com/projects/
data-integrity/dist/documentation/
dif-dma.pdf.

