


<Insert Picture Here>

I/O Topology – Getting to Know Your Storage
Martin K. Petersen <martin.petersen@oracle.com>
Consulting Software Developer, Linux Kernel Engineering



The Story So Far...

• All block devices essentially look the same
• Speak ATA or SCSI, regardless of transport (SPI, 

SAS, FC, USB, FireWire)
• Regardless of whether it is a cheap USB stick or a 

million dollar array with non-volatile cache treat them 
exactly the same. Like a single spindle disk drive

• Part of that abstraction has been inherent in the 
protocols but we're reaching the end of the useful life 
of that simplistic view

• It's time to get to know our storage...



Disk Drives



Disk Drives: Block Sizes and Sectors

• Most block-based storage devices use 512-byte 
sectors

• So far these sectors have constituted both the 
physical size of allocation on the disk as well as the 
unit used to address a particular location

• However, for RAID arrays and solid state devices the 
internal allocation unit is often bigger, despite 
pretending to be 512-byte based as viewed by the 
operating system

• From now on we'll have to distinguish between:
• Physical block: The storage device's internal allocation unit
• Logical block: The way we address a location on the device



Disk Drives: 512-byte Physical Blocks

• Each sector on disk is actually quite a bit bigger than 
512 bytes thanks to fields used internally by the drive 
firmware

• These fields help to position the read/write head, help 
ensure the right location is found and contain an ECC 
that protects the data portion of the sector

• Together these fields eat up a lot of physical storage 
space and disk drive manufacturers are pretty close 
to the physical limits as far as track density goes

• This means the only way to increase capacity is to 
reduce overhead



Disk Drives: 4KB Physical Blocks

• The solution is to switch to 4KB blocks
• Despite potentially having multiple sync fields per 

blocks and a bigger ECC, there's still a substantial 
gain in capacity

• Most operating systems use 4KB pages and 
filesystem blocks so moving away from 512 byte 
increments is not a big deal

• However, legacy operating systems are hardwired to 
512 and can not use drives which expose 4KB blocks



Disk Drives: Desktop vs. Enterprise

• Because of the desire to keep supporting legacy 
desktop operating systems, drive vendors will keep 
shipping drives which use 512-byte logical blocks but 
which use 4KB physical blocks internally

• SCSI-class drives will switch to 4KB logical and 
physical blocks because most server operating 
systems can handle bigger sectors just fine

• SCSI-class drives can be formatted down to 
512/520/528-byte blocks with a loss in user-
accessible capacity due to increased overhead



Disk Drives: Alignment

• The desktop class drives are only emulating 512-byte 
sectors. If you submit a misaligned request, the drive 
will have to resort to read-modify-write

• This means the platter has to do an extra revolution, 
inducing latency and lowering IOPS

• Vendors are working on techniques to mitigate this in 
drive firmware. Without mitigation, the drop in 
performance is quite significant



Alignment vs. DOS Partitions

• DOS put first partition on LBA 63 by default and now 
we're stuck with it

• Consequently, laptop/desktop drives may ship 
formatted so that LBA 63 is aligned on a 4KB physical 
boundary to ease the pain for XP users

• Only the first partition will be naturally aligned. And 
only if DOS partition tables are used

• Vista and Windows 7 will align first partition on a 
1MB+ε boundary



Alignment vs. Linux Partitions

• Linux has traditionally been using DOS partitions
• With 4KB drives that generally means we'll get 

optimal performance on /boot and everything else 
will suffer

• Thankfully both ATA and SCSI drives report 
alignment and Linux now retrieves this information

• physical_block_size, logical_block_size, 
alignment_offset are exported in /sys/block/foo/queue

• With this information exposed it is up to partition tools 
to ensure that filesystems start on a naturally aligned 
boundary

• fdisk/parted changes are underway



Alignment vs. MD and DM

• The block layer provides a generic device stacking 
function that now handles logical vs. physical block 
sizes and verifies compatible alignment

• This stacking function is used by both MD and DM 
and will warn if adding a device will cause 
misalignment

• It is up to the userland utilities (mdadm and dmsetup) 
to ensure that the beginning of the virtual block device 
is on a naturally aligned boundary

• DM userland changes done but not upstream yet
• mdadm in progress



Solid State Drives



Solid State Drives

• 512-byte physical blocks were a trade-off that made 
sense in the 80s

• However, almost everything these days is working on 
multiples of 4KB

• Flash chips are not an exception, most of the devices 
out there use 4KB pages

• Misaligned requests to a low- to mid-range SSD will 
suffer just like misaligned requests to a 4KB disk drive

• Thankfully SSD vendors have the option of filling out 
the same fields as used by disk drives

• And if they do, Linux will now do the right thing wrt. 
alignment



Solid State Drives

• More device characteristics are either available or in 
the pipeline

• One that we are using already is the rotational 
parameter that indicates whether we are dealing with 
a spinning disk or not

• The rotational parameter is not just for solid state 
drives. RAID arrays which often have large caches 
can set it too and we can avoid optimizing head 
movement across a platter that does not exist



RAID Arrays



RAID Arrays

• Arrays generally use blocks bigger than 512 byte 
internally. 4, 16, 64 KB are normal. Sometimes even 
bigger

• This means a small I/O request will cause read-
modify-write cycle

• And writes smaller than the stripe size will cause a 
parity update which may incur another penalty

• The SCSI protocol has been expanded with knobs 
that tell us the array's preferred I/O granularity for 
random I/O as well as the optimal sustained I/O size

• These usually correspond to chunk and stripe size 
respectively



RAID Arrays

• Linux will now query and export these values in 
/sys/block/foo/queue/minimum_io_size and 
optimal_io_size

• Filesystems can use these to chose block and 
allocation sizes and to naturally align data and 
metadata

• These I/O hints are actually provided for all block 
devices, not just for hardware RAID arrays that 
explicitly report them.

• DM and MD fill them out according to the RAID level 
in question

• Look, Ma! No hacky ioctls! One-stop shopping for 
filesystem utilities



Data Integrity

• This is not just about performance. In some cases 
alignment is an absolute requirement for correctness!

Example: 512-byte logical / 4KB physical drive 
experiencing a write error may invalidate logical 
blocks that have been previously acknowledged as 
written to the kernel:



Data Integrity

• Shared storage setups are common in the enterprise

Example: Imagine an array with 2KB physical blocks 
shared between two nodes. Node 1 crashing during a 
write may cause Node 2 to see stale/inconsistent 
data.



Conclusion

• I/O topology changes merged in 2.6.31
• Common interface for all block devices
• ATA + SCSI devices supported
• MD and most of DM support has landed
• DM userland utilities done
• mdadm in next on my list
• fdisk & parted need work


	PowerPoint Presentation
	Title of Presentation
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

