

<Insert Picture Here>

Linux Data Integrity
Martin K. Petersen
Software Developer, Linux Engineering

<Insert Picture Here>

Topics

• DIF/DIX
• Data Corruption
• T10 DIF
• Data Integrity Extensions

• Linux Data Integrity
• Filesystems
• User Application Interfaces

DIF, DIX & Data Integrity

Data Corruption

• Tendency to focus on corruption inside disk drives
• Media developing defects
• Head misses

• However, corruption can - and often does - happen
while data is in flight
• Modern transports like FC and SAS have CRC on the wire
• Which leaves library / kernel / firmware errors
• Examples: Bad buffer pointers, missing or misdirected writes

• Industry demand for end-to-end protection
• Oracle HARD is widely deployed
• Other databases and mission-critical business apps
• Nearline/archival storage wants belt and suspenders

Data Corruption

• DIF/DIX are orthogonal to logical block checksums
• We still love you, btrfs!
• Logical block checksum errors are used for detection of

corrupted data
• Detection happens at READ time
• ... which could be months later, original buffer is lost
• Any redundant copies may also be bad if original buffer was

garbled

• DIF/DIX are about proactively preventing corruption
• Preventing bad data from being stored on disk in the first

place
• ... and finding out about problems before the original buffer is

erased from memory

Disk Drives

• Most disk drives use 512-byte sectors
• A sector is the smallest atomic unit the drive can

access
• Each sector is protected by a proprietary ECC internal

to the drive firmware
• 4096-byte sectors are coming
• Enterprise drives (Parallel SCSI/SAS/FC) support

520/528 byte “fat” sectors
• Sector sizes that are not a multiple of 512 bytes have

seen limited use because operating systems deal with
everything in units of 512, 1024, 2048 or 4096 bytes

• RAID arrays make extensive use of fat sectors

Normal I/O

T10 Data Integrity Field

• Prevents data corruption and misplacement errors
• Only protects path between HBA and storage device
• Protection information is interleaved with data on the

wire, effectively 520-byte sectors
• SATA T13/External Path Protection proposal uses

same PI format

T10 Data Integrity Field I/O

Data Integrity Extensions

• Attempt to extend T10 DIF all the way up to the
application, enabling true end-to-end data integrity
protection

• Essentially a set of meta commands for SCSI/SAS/FC
controllers

• The Data Integrity Extensions:
• Enable DMA transfer of protection information to and from

host memory
• Separate data and protection information buffers to avoid

inefficient 512+8+512+8+512+8 scatterlists
• Provide a set of commands that tell HBA how to handle I/O:

• Generate, strip, pass, convert and verify

DIX Operations

Data Integrity Extensions + DIF I/O

Protection Envelopes

Linux Data Integrity

Block Layer

• struct bio
• bio_integrity_payload

• Integrity bio_vec + housekeeping hanging off of bio

• Filesystem can explicitly attach it...
• ... or block layer can auto-generate on WRITE
• Block layer can verify on READ

• Format of protection information opaque to block layer

• struct block_device
• Has an integrity profile that gets registered by ULD
• Layered devices must ensure all subdevices have same

profile

Filesystems

• DIF application tag:
• 2 bytes per sector for Type 1 + 2
• 6 bytes per sector for Type 3

• FS can attach arbitrary structures which will be
interleaved between the available tag space in an I/O

• Essentially allows logical (filesystem) block tagging
• FS can use tags to implement checksumming without

changing on-disk format
• Another option is to write stuff that will aid recovery

(back pointers, inode numbers, etc.)

User Application Interfaces

Wouldn't it be nice if...

Our UNIX Heritage

• Then:
• cat foo | frob | mangle > bar
• Applications were short lived
• -EIO meant that the pipeline broke and operator had to fix it
• Input easily reproducible by restarting pipeline

• Now:
• Oracle, mysqld, OpenOffice.org, firefox, etc.
• Applications run forever
• -EIO never gets to most applications thanks to buffered writes
• Data mainly comes from user input and the network, often not

reproducible
• But we're still using the old API

Async I/O

• There are other options:
• Linux AIO
• POSIX aio
• fibrils/syslets

• But hardly anybody is using them
• Almost complete lack of interest
• Apparently existing interfaces are good enough for

applications that don't really care about data
• And/or errors happen infrequently enough that they

are not considered a real problem
• Anal-retentive applications use direct or sync I/O

Oracle's swiss army knife: ASM

• “Automatic Storage Management”, essentially a
logical volume manager internal to the Oracle DB

• ASMLib: Userland library that implements the Oracle-
specified interface

• oracleasm: Kernel module that receives IOCBs from
ASMLib and feeds them to the block layer as bios

• Supports protection information passthrough
• Could potentially be made generic
• Async I/O on steroids
• Woohoo! Yet another API!

So where do we go from here?

• Interface must be as close to the traditional
read()/write() model as possible or nobody will bother
• How do we get protection information in and out of the

kernel?
• Must also work for current aio users
• Augment existing interfaces or create new API?

• Completion
• Which async error notification mechanism of the week?
• And how do we go about extended error information?
• -EIO in itself isn't exactly helpful

User API vs. Data Integrity

More Info

• http://oss.oracle.com/projects/data-integrity/
• Documentation
• DIX specification
• Patches
• Funny hats
• Source repository

http://oss.oracle.com/projects/data-integrity/

	PowerPoint Presentation
	Title of Presentation
	Program Agenda Example
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

