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Topics

• DIF/DIX
• Data Corruption
• T10 DIF
• Data Integrity Extensions

• Linux Data Integrity
• Filesystems
• User Application Interfaces



DIF, DIX & Data Integrity



Data Corruption

• Tendency to focus on corruption inside disk drives
• Media developing defects
• Head misses

• However, corruption can - and often does - happen 
while data is in flight
• Modern transports like FC and SAS have CRC on the wire
• Which leaves library / kernel / firmware errors
• Examples: Bad buffer pointers, missing or misdirected writes

• Industry demand for end-to-end protection
• Oracle HARD is widely deployed
• Other databases and mission-critical business apps
• Nearline/archival storage wants belt and suspenders



Data Corruption

• DIF/DIX are orthogonal to logical block checksums
• We still love you, btrfs!
• Logical block checksum errors are used for detection of 

corrupted data
• Detection happens at READ time
• ... which could be months later, original buffer is lost
• Any redundant copies may also be bad if original buffer was 

garbled

• DIF/DIX are about proactively preventing corruption
• Preventing bad data from being stored on disk in the first 

place
• ... and finding out about problems before the original buffer is 

erased from memory



Disk Drives

• Most disk drives use 512-byte sectors
• A sector is the smallest atomic unit the drive can 

access
• Each sector is protected by a proprietary ECC internal 

to the drive firmware
• 4096-byte sectors are coming
• Enterprise drives (Parallel SCSI/SAS/FC) support 

520/528 byte “fat” sectors
• Sector sizes that are not a multiple of 512 bytes have 

seen limited use because operating systems deal with 
everything in units of 512, 1024, 2048 or 4096 bytes

• RAID arrays make extensive use of fat sectors



Normal I/O



T10 Data Integrity Field

• Prevents data corruption and misplacement errors
• Only protects path between HBA and storage device
• Protection information is interleaved with data on the 

wire, effectively 520-byte sectors
• SATA T13/External Path Protection proposal uses 

same PI format



T10 Data Integrity Field I/O



Data Integrity Extensions

• Attempt to extend T10 DIF all the way up to the 
application, enabling true end-to-end data integrity 
protection

• Essentially a set of meta commands for SCSI/SAS/FC 
controllers

• The Data Integrity Extensions:
• Enable DMA transfer of protection information to and from 

host memory
• Separate data and protection information buffers to avoid 

inefficient 512+8+512+8+512+8 scatterlists
• Provide a set of commands that tell HBA how to handle I/O:

• Generate, strip, pass, convert and verify



DIX Operations



Data Integrity Extensions + DIF I/O



Protection Envelopes



Linux Data Integrity



Block Layer

• struct bio
• bio_integrity_payload

• Integrity bio_vec + housekeeping hanging off of bio

• Filesystem can explicitly attach it...
• ... or block layer can auto-generate on WRITE
• Block layer can verify on READ

• Format of protection information opaque to block layer

• struct block_device
• Has an integrity profile that gets registered by ULD
• Layered devices must ensure all subdevices have same 

profile



Filesystems

• DIF application tag:
• 2 bytes per sector for Type 1 + 2
• 6 bytes per sector for Type 3

• FS can attach arbitrary structures which will be 
interleaved between the available tag space in an I/O

• Essentially allows logical (filesystem) block tagging
• FS can use tags to implement checksumming without 

changing on-disk format
• Another option is to write stuff that will aid recovery 

(back pointers, inode numbers, etc.)



User Application Interfaces



Wouldn't it be nice if...



Our UNIX Heritage

• Then:
• cat foo | frob | mangle > bar
• Applications were short lived
• -EIO meant that the pipeline broke and operator had to fix it
• Input easily reproducible by restarting pipeline

• Now:
• Oracle, mysqld, OpenOffice.org, firefox, etc.
• Applications run forever
• -EIO never gets to most applications thanks to buffered writes
• Data mainly comes from user input and the network, often not 

reproducible
• But we're still using the old API



Async I/O

• There are other options:
• Linux AIO
• POSIX aio
• fibrils/syslets

• But hardly anybody is using them
• Almost complete lack of interest
• Apparently existing interfaces are good enough for 

applications that don't really care about data
• And/or errors happen infrequently enough that they 

are not considered a real problem
• Anal-retentive applications use direct or sync I/O



Oracle's swiss army knife: ASM

• “Automatic Storage Management”, essentially a 
logical volume manager internal to the Oracle DB

• ASMLib: Userland library that implements the Oracle-
specified interface

• oracleasm: Kernel module that receives IOCBs from 
ASMLib and feeds them to the block layer as bios

• Supports protection information passthrough
• Could potentially be made generic
• Async I/O on steroids
• Woohoo! Yet another API!



So where do we go from here?

• Interface must be as close to the traditional 
read()/write() model as possible or nobody will bother
• How do we get protection information in and out of the 

kernel?
• Must also work for current aio users
• Augment existing interfaces or create new API?

• Completion
• Which async error notification mechanism of the week?
• And how do we go about extended error information?
• -EIO in itself isn't exactly helpful



User API vs. Data Integrity



More Info

• http://oss.oracle.com/projects/data-integrity/
• Documentation
• DIX specification
• Patches
• Funny hats
• Source repository

http://oss.oracle.com/projects/data-integrity/
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