A Note on Guard Tag Calculation Algorithms

Martin K. Petersen, Oracle
martin.petersen@oracle.com

February 10th 2007

Introduction

When we did the initial feasibility study of whether T10 DIF was a suitable successor
to HARD I did some rudimentary benchmarking of the impact of having the host
processor calculate the CRC on each I/0.

I have followed up this week by doing a simple benchmark using a program which
will perform either a checksum or a CRC on buffers of various size.

One test runs exclusively in memory giving us the maximum throughput of the
processor. Another test writes the buffer to a disk array which consists of 10 15Krpm
drives. The array is hooked up to a 2Gbps fabric using Emulex LP11002 controllers.
The drives are striped in 512KB chunks using Linux software RAID.

All tests results are an average of 10 runs.

1 Algorithms

The tests were done using the following algorithms:

Algorithm | Description

XOR A simple XOR of all bytes in the buffer

TCP Ref. The TCP/IP reference checksum as found in RFC1071
TCP Opt. The TCP/IP checksum optimized to work on 32-bit words
T10 Ref. The T10 reference CRC as found in SBC-3

T10 Opt. The T10 CRC optimized using a lookup table

Table 1: Algorithms

All my optimizations were platform-independent and written in C. A colleague and
I are exploring optimizing both the T10 CRC and the TCP checksums using the SSE
instructions found in modern x86 / x86_64 processors.

SSE is a set of SIMD (single instruction, multiple data) instructions used especially
in 3D applications. SSE can be leveraged when working on chunks of data bigger than
32 bits (64 or 128 bit). SSE is currently used for RAID5 and RAID6 parity calculations
within the Linux kernel.

Another point worth mentioning is that intel recently released specifications for
the upcoming SSE4 instruction set. And there is a dedicated CRC operation included
(supporting any polynomium). This means that a year or two down the road we will
be able to perform the CRC calculation entirely in hardware.

2 In-memory performance

The numbers below indicate the bandwidth of each algorithm on a selection of host
processors. All tests are single-threaded so only one core was busy on the multicore
processors. In all cases a 1GB buffer was used:

Processor | XOR | TCPRef. | TCPOpt. | TIORef. | T10 Opt.
1.3 GHz 397.89 338.37 1115.87 28.03 152.51
Itanium 2

2.2 GHz 554.51 549.93 889.27 58.30 220.04
Opteron

3.0 GHz 363.38 504.49 577.66 22.73 222.37
Xeon MP

213 GHz | 392.24 589.55 1033.55 31.47 221.43
Xeon 3050

Table 2: Single-threaded in-memory performance in MB/s. 100% CPU

The T10 reference CRC is the slowest. My table-optimized implementation yields
5 times the performance on average, depending on processor.
The TCP reference implementation and the XOR are comparable on most processor
types. This is the overhead we are paying today using HARD. Interestingly enough,
XOR is fairly slow on the Xeon 3050 which is the most recent processor in the mix.
The optimized TCP checksum function is by far the fastest in all cases.

3 Disk Performance

The single-threaded disk performance graphs look like this:

HP Proliant dl145 (1-way 2.2 GHz Opteron, 2GB RAM)

180,
160, .
140 > .
Q)
m
2 120K eeee None]
g s=sa TCP Ref.
is vvvv TCP Opt.
g xxxx T10 Ref.
"g 100 >»>>> T10 Opt. |
@
m
80} .
60} .
| | | | |
Do 1000 1500 2000 2500 3000 3500
I/0O size (MB)
Figure 1: I/0 bandwidth as a function of I/0 size
HP ProLiant dl1145 (1-way 2.2 GHz Opteron, 2GB RAM)
100, ‘ ‘ ‘ ‘ T
90} .
> > >
>
>
80} .
S
~ 70} eeee None 4
() +—++—+ XOR
= sasa TCP Ref.
» vvvyv TCP Opt.
= sxxx T10 Ref.
D 60 >>> > TlOOpt. T
y
@) M
50(.
— — v v
40./.\'\4—0 |
3 | | | | |
000 1000 1500 2000 2500 3000 3500

I/O size (MB)

Figure 2: Processor load in %

The “None” graph represents the performance of doing the I/0 without any check-
summing. T10 Ref. is the slowest performer and also the biggest consumer of pro-
cessing power. The table-optimized T10 CRC yields much better bandwidth but still
has a high CPU usage. And just like in the pure memory test, XOR and the reference
TCP checksums are comparable.

The interesting part, of course, is that the optimized TCP checksum algorithm is
not only the best performer. It also has the lowest processor load (45 — 48%), only
15 — 18% above the baseline.

